Neutron radiation area monitoring system for proton therapy facilities.
نویسندگان
چکیده
A neutron radiation area monitoring system has been developed for proton accelerator facilities dedicated to cancer therapy. The system comprises commercial measurement equipment, computer hardware and a suite of software applications that were developed specifically for use in a medical accelerator environment. The system is designed to record and display the neutron dose-equivalent readings from 16 to 24 locations (depending on the size of the proton therapy centre) throughout the facility. Additional software applications provide for convenient data analysis, plotting, radiation protection reporting, and system maintenance and administration tasks. The system performs with a mean time between failures of >6 months. Required data storage capabilities and application execution times are met with inexpensive off-the-shelf computer hardware.
منابع مشابه
Radiation Effects on the On-line Monitoring System of a Hadrontherapy Center
Introduction Today, there is a growing interest in the use of hadrontherapy as an advanced radiotherapy technique. Hadrontherapy is considered a promising tool for cancer treatment, given its high radiobiological effectiveness and high accuracy of dose deposition due to the physical properties of hadrons. However, new radiation modalities of dose delivery and on-line beam monitoring play crucia...
متن کاملCalculation of Neutron Dose Ratio of Heart, Lung and Liver due to breast cancer Proton Therapy using MCNPX code
Introduction: The proton beam produced in particle accelerators has an appropriate therapeutic potential. In this research, proton therapy of breast cancer is simulated using the MCNPX code in a MIRD phantom, also the contribution of scattered neutron dose during the proton therapy were calculated for the Heart, Lung and Liver. Materials and Methods: For si...
متن کاملAssessment of The Relation Between Energy Of Primary Protons And Undesired Neutron Dose During Proton Therapy By Monte Carlo Method
Introduction: High-energy beams of protons offer significant advantages for the treatment of deepseated local tumors. Their physical depth-dose distribution in tissue is characterized by a small entrance dose and a distinct maximum -Bragg peak- near the end of range with a sharp fall-off at the distal edge. Alongside its advantages there are some point that they need to meticul...
متن کاملMonte Carlo simulation of secondary neutron dose for scanning proton therapy using FLUKA
Proton therapy is a rapidly progressing field for cancer treatment. Globally, many proton therapy facilities are being commissioned or under construction. Secondary neutrons are an important issue during the commissioning process of a proton therapy facility. The purpose of this study is to model and validate scanning nozzles of proton therapy at Samsung Medical Center (SMC) by Monte Carlo simu...
متن کاملAssessment of secondary particles in breast proton therapy by Monte Carlo simulation code using MCNPX
Background: The present study aimed to investigate the equivalent dose in vital organs, including heart and lung, due to secondary particles produced during breast proton therapy. Materials and Methods: The numerical ORNL female-phantom was improved and simulated using the Monte Carlo MCNPX code. The depth-dose profile of proton beams with different energies was simulated. The proper energy ran...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Radiation protection dosimetry
دوره 115 1-4 شماره
صفحات -
تاریخ انتشار 2005